L\u00f4 k\u00e9p l\u00e0 g\u00ec?<\/h2>\n
L\u00f4 k\u00e9p t\u1ee9c l\u00e0 nh\u1eefng s\u1ed1 l\u00f4 thu\u1ed9c b\u1ed9 s\u1ed1 k\u00e9p<\/strong>. C\u1ee5 th\u1ec3 l\u00f4 k\u00e9p g\u1ed3m c\u00e1c s\u1ed1 sau \u0111\u00e2y:<\/p>\n 00, 11, 22, 33, 44, 55, 66, 77, 88, 99<\/strong><\/p>\n Hi\u1ec7n nay c\u00f3 2 c\u00e1ch nu\u00f4i l\u00f4 k\u00e9p khung 3 ng\u00e0y r\u1ea5t th\u00f4ng d\u1ee5ng \u0111\u00f3 l\u00e0 BTL v\u00e0 STL k\u00e9p khung 3 ng\u00e0y. Kubet s\u1ebd l\u1ea7n l\u01b0\u1ee3t \u0111i\u1ec3m t\u1edbi 2 c\u00e1ch th\u1ee9c n\u00e0y trong nh\u1eefng chuy\u00ean m\u1ee5c d\u01b0\u1edbi \u0111\u00e2y.<\/p>\nNu\u00f4i BTL K\u00e9p khung 3 ng\u00e0y<\/h2>\n